57,525 research outputs found

    Present Bounds on New Neutral Vector Resonances from Electroweak Gauge Boson Pair Production at the LHC

    Get PDF
    Several extensions of the Standard Model predict the existence of new neutral spin-1 resonances associated to the electroweak symmetry breaking sector. Using the data from ATLAS (with integrated luminosity of L=1.02 fb^{-1}) and CMS (with integrated luminosity of L=1.55 fb^{-1}) on the production of W+W- pairs through the process pp -> l^+ l^{\prime -} \sla{E}_T, we place model independent bounds on these new vector resonances masses, couplings and widths. Our analyses show that the present data excludes new neutral vector resonances with masses up to 1-2.3 TeV depending on their couplings and widths. We also demonstrate how to extend our analysis framework to different models working a specific example.Comment: 10 pages, 6 figure

    Constraining anomalous Higgs interactions

    Full text link
    The recently announced Higgs discovery marks the dawn of the direct probing of the electroweak symmetry breaking sector. Sorting out the dynamics responsible for electroweak symmetry breaking now requires probing the Higgs interactions and searching for additional states connected to this sector. In this work we analyze the constraints on Higgs couplings to the standard model gauge bosons using the available data from Tevatron and LHC. We work in a model--independent framework expressing the departure of the Higgs couplings to gauge bosons by dimension--six operators. This allows for independent modifications of its couplings to gluons, photons and weak gauge bosons while still preserving the Standard Model (SM) gauge invariance. Our results indicate that best overall agreement with data is obtained if the cross section of Higgs production via gluon fusion is suppressed with respect to its SM value and the Higgs branching ratio into two photons is enhanced, while keeping the production and decays associated to couplings to weak gauge bosons close to their SM prediction.Comment: v3: Added acknowledgment to FP7 ITN INVISIBLES (Marie Curie Actions PITN-GA-2011-289442). Nothing else changed with respect to v

    Large N Effects and Renormalization of the Long-Range Coulomb Interaction in Carbon Nanotubes

    Full text link
    We develop a dimensional regularization approach to deal with the low-energy effects of the long-range Coulomb interaction in 1D electron systems. The method allows us to avoid the infrared singularities arising from the long-range Coulomb interaction at D = 1, providing at the same time insight about the fixed-points of the theory. We show that the effect of increasing the number N of subbands at the Fermi level is opposite to that of approaching the bare Coulomb interaction in the limit D --> 1. Then, we devise a double scaling limit, in which the large N effects are able to tame the singularities due to the long-range interaction. Thus, regular expressions can be obtained for all observables right at D = 1, bearing also a dependence o the doping level of the system. Our results imply a variation with N in the value of the exponent for the tunneling density of states, which is in fair agreement with that observed in different transport experiments involving carbon nanotubes. As the doping level is increased in nanotubes of large radius and multi-walled nanotubes, we predict a significant reduction of order N^{-1/2} in the critical exponent of the tunneling density of states.Comment: 16 pages, 5 figures, PACS codes: 73.40, 11.10.

    Meson-baryon threshold effects in the light-quark baryon spectrum

    Get PDF
    We argue that selected SS wave meson-baryon channels may play a key role to match poor baryon mass predictions from quark models with data. The identification of these channels with effective inelastic channels in data analysis allows to derive a prescription which could improve the extraction and identification of baryon resonances.Comment: 17 pages, 3 figures. Accepted for publication in Phys. Rev.
    • …
    corecore